724 research outputs found

    Observation of the Decay B^-→D_s^((*)+)K^-ℓ^-ν̅ _ℓ

    Get PDF
    We report the observation of the decay B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ based on 342  fb^(-1) of data collected at the Υ(4S) resonance with the BABAR detector at the PEP-II e^+e^- storage rings at SLAC. A simultaneous fit to three D_s^+ decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ)=[6.13_(-1.03)^(+1.04)(stat)±0.43(syst)±0.51(B(D_s))]×10^(-4), where the last error reflects the limited knowledge of the D_s branching fractions

    Field-induced level crossings in spin clusters: Thermodynamics and magneto-elastic instability

    Full text link
    Quantum spin clusters with dominant antiferromagnetic Heisenberg exchange interactions typically exhibit a sequence of field-induced level crossings in the ground state as function of magnetic field. For fields near a level crossing, the cluster can be approximated by a two-level Hamiltonian at low temperatures. Perturbations, such as magnetic anisotropy or spin-phonon coupling, sensitively affect the behavior at the level-crossing points. The general two-level Hamiltonian of the spin system is derived in first-order perturbation theory, and the thermodynamic functions magnetization, magnetic torque, and magnetic specific heat are calculated. Then a magneto-elastic coupling is introduced and the effective two-level Hamilitonian for the spin-lattice system derived in the adiabatic approximation of the phonons. At the level crossings the system becomes unconditionally unstable against lattice distortions due to the effects of magnetic anisotropy. The resultant magneto-elastic instabilities at the level crossings are discussed, as well as the magnetic behavior.Comment: 13 pages, 8 figures, REVTEX

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction

    Full text link
    Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Few interesting phenomena are discussed in detail. Structural asymmetry of two-site molecule results in rectification effect, which can be neutralized by asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC) DNA molecule reveal the coupling- and temperature-independent saturation effect of the current at high voltages, where for short chains we establish the inverse square distance dependence. Besides, we document the shift of the conductance peak in the direction to higher voltages due to the temperature decrease.Comment: 12 pages, 6 figure

    Observation of time-reversal violation in the B0 meson system

    Get PDF
    The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or B¯¯¯0), and J/ψK0L or cc¯K0S final states (referred to as B+ or B−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, B¯¯¯0→B− and B−→B¯¯¯0, as a function of the time difference between the two B decays. Using 468×106 BB¯¯¯ pairs produced in Υ(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS+T=−1.37±0.14(stat)±0.06(syst) and ΔS−T=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel)

    Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |V_{ub}|

    Get PDF
    We report the results of a study of the exclusive charmless semileptonic decays, B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu, B^+ --> eta l^+ nu and B^+ --> eta^' l^+ nu, (l = e or mu) undertaken with approximately 462x10^6 B\bar{B} pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q^2, the square of the momentum transferred to the lepton-neutrino pair, for B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu and B^+ --> eta l^+ nu. From these distributions, we extract the form-factor shapes f_+(q^2) and the total branching fractions BF(B^0 --> pi^- l^+ nu) = (1.45 +/- 0.04_{stat} +/- 0.06_{syst})x10^-4 (combined pi^- and pi^0 decay channels assuming isospin symmetry), BF(B^+ --> omega l^+ nu) = (1.19 +/- 0.16_{stat} +/- 0.09_{syst})x10^-4 and BF(B^+ --> eta l^+ nu) = (0.38 +/- 0.05_{stat} +/- 0.05_{syst})x10^-4. We also measure BF(B^+ --> eta^' l^+ nu) = (0.24 +/- 0.08_{stat} +/- 0.03_{syst})x10^-4. We obtain values for the magnitude of the CKM matrix element V_{ub} by direct comparison with three different QCD calculations in restricted q^2 ranges of B --> pi l^+ nu decays. From a simultaneous fit to the experimental data over the full q^2 range and the FNAL/MILC lattice QCD predictions, we obtain |V_{ub}| = (3.25 +/- 0.31)x10^-3, where the error is the combined experimental and theoretical uncertainty.Comment: 35 pages, 14 figures, submitted to PR

    Search for lepton-number violating processes in B+ -> h- l+ l+ decays

    Get PDF
    We have searched for the lepton-number violating processes B+ -> h- l+ l+ with h- = K-/pi- and l+ = e+/mu+, using a sample of 471+/-3 million BBbar events collected with the BaBar detector at the PEP-II e+e- collider at the SLAC National Accelerator Laboratory. We find no evidence for these decays and place 90% confidence level upper limits on their branching fractions Br(B+ -> pi- e+ e+) K- e+ e+) pi- mu+ mu+) K- mu+ mu+) < 6.7 x 10^{-8}.Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D. R
    corecore